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Abstract— Deep learning has triggered substantial improve-
ments in computer vision. Especially convolutional neural
networks (CNNs) were found to be very effective for e.g. clas-
sification tasks [1] [2] [3] [4] [5]. Fully convolutional networks
(FCNs) [6] describe a way to modify a CNN to conduct semantic
segmentation. The segmentation of newspaper articles is quite
difficult, because the layout can be very complex and it varies
for different newspapers. We show that FCNs perform very well
for this problem. The proposed FCN-based network is trained
end-to-end and compared to an existing solution [7]. It reaches
better scores and requires less computation time.

I. INTRODUCTION

Many documents, books and newspapers in large media
archives are not yet digitized. If these archives would be
available in digital form, they could be used for more
detailed data analysis. It would be much easier to find
information that is currently only available on printed me-
dia. Newspapers especially may contain interesting informa-
tion; however, it is very difficult to digitize them, because
many different page layouts are used. To detect different
articles on a single page, it is required not only to do
optical character recognition (OCR), but also to detect the
article borders. Real-time print media monitoring would also
profit from a solution with a high accuracy, because until the
quality reaches a very high level, the article segmentation
has to be done manually. High quality is required because
customers who use the service pay much for highly accurate
results.

An already existing solution is proposed by
M. Armold et al. [7]. They combine three different
approaches to do the newspaper article segmentation.
One is a rule-based method, another a text-based method,
and the third method is image-based. The results of
these three methods are then combined to a final article
segmentation. This work focuses on the image-based
approach of [7] and improves it. M. Arnold et al. use a
neural network that has a similar architecture as the network
proposed by D. C. Ciresan et al. [8]. For every pixel a
surrounding window is created, which is used as input for
the network. The output of the network is a classification
for the pixel in the middle of the window. This classification
process is done for each pixel of the input image. We were
able to obtain the non-public dataset which is used by [7]
for the training. It contains about 5, 500 pages of the largest
newspapers from Switzerland. It is used to train our network
and to compare it against [7].

Our proposed method does semantic segmentation [6]
and uses a background and an article class for the
pixel classification. Our network is based on the
fully convolutional network (FCN) architecture that
is proposed by J. Long et al. [6]. Compared to other
approaches, like a patch-based method that classifies each
pixel within a window around the pixel [8], the FCN
architecture is more efficient in terms of computational
time, because it requires only one execution of the network.
Notably, it computes low-level filters only once. It is also
able to use global information for local classification [6].
In contrast, the patch-based method is not able to use
information outside the window for the classification task.
A larger window size allows using more information of the
context but also increases the computational costs.

A FCN has also the advantage that there are no densly
connected layers, which gives the possibility to use input
images with different sizes.

Related work will be discussed in Section II. After de-
scribing the network model in Section III and the required
post-processing in Section IV, the training will be explained
in Section V. Finally, Section VI contains some experiments
that were done to compare our implementation with [7].

II. RELATED WORK

Because of the large media archives that are not yet
digitized, many previous works have focused on similar prob-
lems. Not only newspapers, but complete libraries contain not
yet digitized material. Compared to printed books, newspaper
pages often have a more complex layout, which also may
vary for different newspapers and change over time.

T. Palfray et al. [9] focus on the challenge of digitizing old
newspapers. Their approach not only does the segmentation
but also finds the reading order. The used method works with
an accuracy of 85.84% on old newspaper pages and reaches
state-of-the art results. A particular conditional random field
(CRF) model does the pixel classification. However, it is very
specific and focuses only on old newspapers. This paper’s
solution focuses on new newspaper layouts and may also be
used more widely.

B. Gatos et al. [10] propose a method to do article
segmentation for newspapers. They first identify lines in the
layout and then text and images. In a third step, headings
are identified and finally a set of rules is used to recognize
the articles. The method reaches a recall of 75.20% and a



precision of 77.15%. However, their rule set is much less
dynamic than a neural network. This work’s approach also
has the advantage that an accurate OCR system is used
to preprocess the data. This makes it much easier for the
network to learn the general layout of an article.

A general approach is to use semantic segmentation for
the newspaper page. Each pixel is classified and then the
classification map is analyzed.

M. Amold et al. [7] use a patch-based approach for the
pixel classification. The input images are scaled to 100 pixels
in height. The input image for the used neural network is
already preprocessed by an OCR tool that labels the images
and the texts. For the classification of each pixel, a window
of the size 25 x 25 is used as input for a CNN, which does
the classification itself. This CNN is therefore executed for
each pixel of the input image. The results are often of good
quality. However, compared to our method, it requires much
more time for the execution of the neural network and we
also reach a higher segmentation quality.

CNNs are often used for classification tasks, not only for
2D images [2] and 3D images [3], but also for sentences [4]
as well as for audio data [5]. Y. LeCun et al. [1] already used
CNNs for document recognition in 1998. H. Noh et al. [11]
describe a general approach for semantic segmentation,
which is based on a CNN with deconvolution [12] and
unpooling layers. The advantage is that fine structures can be
segmented very detailedly. For 2D image classification tasks,
the proposed FCN architecture by J. Long et al. [6] allows
extending a CNN architecture for semantic image segmen-
tation instead of classification. Upsampling is done with a
transposed convolution, which is also called deconvolution
or backward-strided convolution [12].

A. Fakhry et al. [13] use a deconvolutional neural network
for biological image segmentation. Their method uses un-
pooling layers and the network is highly designed to not lose
any location information in the convolutional and pooling
layers. This allows it to get a very detailed segmentation.
Their network reaches state-of-the-art results, however, it is
very memory intensive during training. The used Nvidia K80
graphics card with 24 GiB memory was only able to hold a
batch size of 15. Our method requires less memory, which
makes the training easier.

Another approach is to use Recurrent Neural Networks
(RNN) for the semantic segmentation [14] [15]. The advan-
tage is better use of the global information for local classi-
fication. However, the training is computationally expensive
compared to FCNs.

In this paper, the used approach to address this problem
is based on the network proposed by J . Long et al. [6]. The
network is modified to reach highly accurate results for this
use case. Compared to [13] it requires fewer resources for the
training. As can be seen in the benchmark in Section VI-C,
our method reaches a higher accuracy than [7] and the
network is much faster in execution.

TABLE I: Network layers. addN layers are an element-
wise addition to the given layer. The parameter p of the
dropoutN layers describes the probability of setting a
value to 0.

Name Kernel size | Stride | Pad | Output size
input - - 256 x 256 x 2
dropoutl (p=0.3) - - - 256 X 256 X 2
convl-1 5x5 1 2 256 x 256 x 32
convl-2 3x3 1 1 256 x 256 X 16
pool-1 2 X2 2 0 128 x 128 x 16
dropout2 (p=0.3) - - 128 x 128 x 16
conv2-1 5x5 1 2 128 x 128 x 16
conv2-2 3x3 1 1 128 x 128 x 16
pool2 2 X2 2 0 64 x 64 x 16
dropout3 (p=0.5) - - - 64 X 64 X 16
conv3-1 3x3 1 1 64 x 64 x 16
conv3-2 3x3 1 1 64 x 64 x 16
pool3 22 2 0 32 x 32 x 16
dropout4 (p =0.5) - - - 32 x 32 x 16
convé-1 3 x3 1 1 32 x 32 x 64
conv4-2 3x3 1 1 32 x 32 x 64
poold 2 X2 2 0 16 x 16 x 64
dropout5 (p=0.5) - - - 16 X 16 X 64
conv5-1 3x3 1 1 16 x 16 x 64
conv5-2 3x3 1 1 16 x 16 x 128
pool-5 2 X2 2 0 8 x 8 x 128
dropout6 (p=0.3) - - - 8 X 8 x 128
conv6-1 5x5 1 1 8 x 8 x 128
conv6-2 3x3 1 1 8 X 8 x 256
pool-6 2 X2 2 0 4 x4 x 256
dropout7 (p=0.3) - - - 4 x 4 x 256
conv7-1 5X%X5 1 1 4 x 4 x 256
transposed_conv8-1 2x2 2 0 8 X 8 x 128
adds (layer = pool5) - - - 8 X 8 x 128
transposed-_conv9-1 2x2 2 0 16 x 16 x 64
addo (layer = pool4) - - 16 x 16 x 64
transposed_conv10-1 2x2 2 0 32 x32x%x 16
add1o0 (layer = pool3) - - 32 x32x16
transposed_convll-1 4 x4 4 0 128 x 128 x 16
conv12-1 5x5 1 2 128 x 128 x 32
conv12-2 5x5 1 2 128 x 128 x 32
convl2-3-sigmoid 1x1 1 0 128 x 128 x 8
dropoutl2 (p =0.3) - - 128 x 128 x 8
convl2-4 5%X5 1 2 128 x 128 x 32
convl2-5 3x3 1 1 128 x 128 x 16
convl3-l-sigmoid 1x1 1 1 128 x 128 x 1
upscalel3 (factor = 2) 256 x 256 x 1
output 256 x 256 x 1
ITII. MODEL

The network model is based on the fully convolutional
network approach that is proposed by J. Long et al. [6].
The complete network is shown in Figure (1) and each
layer is described in Table I. In the beginning the network
contains several convolutional and max-pooling layers. There
are no densely connected layers in the complete model.
The network is built with three logical parts. Initially, there
is a feature extraction part that does the convolutions and
the max-pooling. This part is a standard CNN. The second
part of the network is used for a trained upscaling and
the segmentation. Finally, a very small refinement network
gives the chance to correct some artifacts. This is mainly
useful because the expected output usually only contains
rectangular objects. Sometimes it is required to refine the
segmentation output to fulfill this requirement. This makes
it much easier to post-process the output. The training time
decreases much with the refinement layers. At the end, a
sigmoid layer is used to do a binary classification.

According to Table I, the feature extraction part
contains the layers from input up to conf7-1.
The upscaling network then contains the layers from
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Fig. 1: The network architecture.
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(a) Input: Plain page

(b) Input: OCR page

(c) Network: Output

(e) Labels

(d) Output: Polygons

Fig. 2: (a) and (b) show the input for the used network. Image (c) contains the plain output of the network and (d) the
detected polygons. (e) shows where the labels actually are positioned.

transposed-conv8-1 up to transposed-convll-1.
Finally, the refinement part includes all layers from
convl2-1 up to convl12-5.

The network input has a shape of 256 x 256 x 2 pixels.
Newspaper pages are resized with respect to the aspect ratio
to fit the 256 x 256 pixel format. The default background
is white. The input size is chosen to maximize the model’s
quality. It is found that larger inputs do no longer increase
the segmentation quality. The model uses two grayscale input
images, which are scaled from [0, 255] to the range [0, 1].
One input image is the plain newspaper page and the other a
preprocessed and OCR scanned version. The network inputs
are shown in Figures (2a) and (2b). The OCR input describes
where text was found, where images were detected, and it
also contains horizontal and vertical lines that are in the plain
newspaper page. During testing it could be seen that the best
combination is to use both inputs. The reason is because the
OCR system does not always work well, but it already gives
the network great hints where something interesting could be.
Most times the OCR system produces a reasonable output.

Except for two sigmoid layers, the network uses only

rectified linear units (ReLU) [16] for the nonlinearities. As
can be seen in Table I, the first initial convolution and the
convolution after the first max-pooling layer use a kernel size
of 5 x 5, and all other convolutions in the feature extraction
layers use a kernel size of 3 x 3. Each max-pooling layer
uses a pool-size of 2 x 2. The kth pooling layer is called
poolk, and such max-pooling layers exist from pooll up
to pool5. The feature count of the convolutions is increased
during the feature extraction network. The first convolutional
layer uses a feature count of 32 and the last one a count of
256. All parameters for all layers are shown in Table I.

As can be seen in Table I, the layer shape before the
feature extraction network is 256 X 256 x 2 and thereafter
it is 4 X 4 x 256. The upscaling network uses transposed
convolutions [12] to train how the different layers should
be upscaled. The initial input is the output of the feature
extraction network. It is upscaled from 4 X 4 x 256 to
8 X 8 x 128. The feature count is equal to the feature count
of pool5. This new output and the output of pool5 are
added together element-wise. This summed-up output is then
upscaled to 16 X 16 x 64 with a transposed convolution and



Algorithm 1: An algorithm to extract rectangular poly-
gons from a binary map.

Algorithm 2: An algorithm to refine polygons in a way
that they match better to some OCR elements.

1 function ExtractPolygons (binaryMap);
Input : A binary map binaryMap
Output: A set of rectangular polygons
2 L +HoughTransform(binaryMap)
L +filter(L,only allow lines which go completely
trough the image and have a degree of 0 or 7)
for line € L do
‘ Draw line to binaryMap with a white color
end
P +Detect black objects in binaryMap and get all
their rectangular bounding boxes as a polygon
8 if |[P| =1 then

w
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9 ‘ Outpolygons < B
10 else

11 OUtpolygons <
12 for p € P do

13 outpolygons

OUtpolygons U ExtractPolygons(get pixels of P
in binaryMap as binary map)

14 end

15 end

16 return outyolygons

uses the same feature count as pool4. Again the output
is added element-wise to the output of pool4 to create a
new representation of the data. This new layer is then again
upscaled to 32 X 32 x 16 with the same feature count as
pool3 and added to the output of pool3. The new layer
uses a feature count of 16. A last time, the new layer is
upscaled by a factor of 4, which creates an output with the
shape 128 X 128 x 16. As can be seen, the output shape
of the upscaling network is not equal to the input shape of
the initial network that would be required for a semantic
segmentation. The reason for this is that a higher resolution
is not required for the segmentation, because the newspaper
articles are usually very coarse and often rectangular. These
facts allow it to work internally with a lower resolution and
still get high accurate results.

The refinement network improves the output of the upscal-
ing network. Without the refinement network, the fine details
in the output do not always look good. It can happen that
borders are not straight or that there are some holes inside
the found articles. This small additional logical network
improves the output and decreases the required training time.
It contains two convolutions with a filter size of 5 x 5 and
32 features, then a convolution with the size 1 x 1, which uses
a sigmoid nonlinearity with 8 features. This sigmoid layer
is used as a bottleneck. It forces the network to compress
the information and to pre-classify it. Then there is another
convolution with a filter size of 5 x 5 and 32 features. The
last layer of the refinement network is a convolution with a
filter size of 3 x 3 and 16 features. The input and the output
of the refinement network have the shape 128 x 128 x 16.

1 function RefinePolygons (polygons, ocr);
Input : A set of polygons polygons and a set of OCR
elements / polygons ocr
Output: A set of refined polygons

2 tmp < polygons

3 for i € {0,1} do

4 increasedpolygons — 0

5 for p € polygons do

6 if p has a rectangular shape then

7 Increase p on every side by 1 pixel unless it
touches another ¢ € polygons

8 end

9 increasedpolygons < increasedpolygons U {p}

10 end

11 tmp < increasedpolygons

12 end

13 OUtpolygons <
14 for p € increasedpolygons dO

15 if
there is at least 1 OCR element of ocr inside p
then

16 Decrease p on all 4 sides until a OCR element

pixel would leave p. Stop then.

17 end

18 OUtpolygons <~ Outpolygons U {p}

19 end

20 return outpelygons

Finally, there is a layer that does the classification. It is a
sigmoid convolution with the filter size 1 x 1 and 1 feature.
Sigmoid is used instead of a softmax layer because there
are only two classes. After this layer, an upscaling layer
scales the z and y axis by a factor of 2. This is done to
create a network output with the same width and height as
the network input. Next, the output classifies each pixel of
the input and has therefore a shape of 256 x 256 x 1. The
network produces values near to 1 if a pixel is classified as
background and values near to O if the pixel is classified
as foreground. It can return any value in (0,1), which is
the reason why an additional function has to be used to
binarize the output. Different threshold values were tested,
and it was determined that it works the best if all values
> (.35 are rounded up to 1 and all values < 0.35 are rounded
down to 0.

In general, the model may be used for input images with
the size 64n x 64m with n, m € Ny, because the complete
network only contains max-pooling and convolutional layers.

IV. POST-PROCESSING

The output data of the model is a classification map that
classifies each pixel of the input image. This map must be
post-processed to generate a polygon for each article. It is
known that articles generally have a rectangular shape. The



binarized network output can be post-processed to reach
a higher accuracy. For this reason, the rectangular objects
are searched with the help of the Hough-transform. The
algorithm is described in Algorithm 1. Its output is a set
of polygons with a rectangular shape.

As described in Section V, the network is trained to
find the article labels that are decreased by 2 pixels. Be-
cause of this, the found article polygons must be increased.
Sometimes just increasing the labels in all directions does
not result in a very good solution, as it is likely that the
article borders match well with OCR blocks. Because of
this, there is a simple refinement algorithm that tries to
improve the detected articles polygons locally. It is described
in Algorithm 2. Its input is a set of article polygons and OCR
element polygons and the output is a set of refined article

polygons.
V. TRAINING

The used dataset from the company
ARGUS der Presse AG contains about 5,500 newspaper
pages. All pages are from the largest Swiss newspapers.
They all contain some labels, but unfortunately only a very
few pages are fully labeled. There are two types of labels.
The black label type is used for articles and the gray label
type for advertisements. The two different labels can be
seen in Figure (2). Almost all labels have a rectangular
shape, but some have much more difficult shapes, as may
be seen in Figure (3). For this work, all advertisement labels
are converted to article labels, because it is not the main
objective of this work to differentiate between real articles
and advertisements.

Newspaper pages that are not fully labeled must be
preprocessed. The non-labeled content would confuse the
network, which is the reason why it should be removed.
The network would not be able to train what an article is
and what is background unless all articles are labeled. The
page content that is more than 3 pixels away from every
article label is changed to white. This is done for the pixels
in the plain input as well as in the OCR input. The 3 pixel
border is very important, because the neural network must
learn how the borders of the articles look like. Often there
are some straight lines between the articles, which are very
helpful to detect the border between articles. On the other
hand, these 3 pixel borders add some noise, because they
often contain some parts of other articles or images. The
neural network learns to ignore these additional parts, which
is not always correct. Different approaches were tested, and
shrinking the labels works much better than the other ways
do. Other tested methods are to just use the fully labeled
pages for the training or also to not shrink the labels but
remove everything outside of them.

As described, some labels do not have a rectangular shape.
Unfortunately, sometimes for very similar input pages the
labels are rectangular and sometimes not. Some other pages
are even wrongly labeled. Because of this, the dataset is
filtered. All images that are wrong labeled or that have
highly non-rectangular shapes, like the images that are shown

(a) Non-rectangular labels.

(b) Non-rectangular labels.

Fig. 3: (a) and (b) show some labels that do not have a
rectangular shape.

in Figure (3), were searched. The found image records are
removed from the training set. The resulting new dataset
improves the quality of the neural network. It contains about
4,135 pages.

The labels used for the articles often have borders that
have a width of just 1 pixel, which is not optimal for the
training. Because of this, all labels are decreased by 2 pixels,
which makes the minimum border size equal to 5 pixels. This
makes the training and especially the post-processing much
easier.

The network uses an input shape of 256 x 256 X 2 as
described in Section IIl. For the training, the downscaled
input is placed at a random position. This is done to increase
the input variety. The newspaper pages are also randomly
mirrored in the y axis with a probability of p = 0.5. These
two methods allow it to train the network better with the
limited available data.

The used binary cross-entropy loss function uses weights
for wrong classifications. The borders between the articles
are the most important part, but often they are small. This
makes it extremely important to classify them correctly.
Nevertheless, it is not a big problem if there are some
wrongly classified pixels inside an article. Pixels that are
classified as article instead of as background get an error
factor of 1.8 and all other classification errors get an error
factor of 1.0.

To make the training more efficient and to avoid over-
fitting, the network uses much dropout [17]. This can be
seen in Figure (1) and in Table I. Dropout is used directly
after the input to add some noise. The network also uses Lo
regularization with a weight decay of 0.0001.

Due to the internal covariate shift problem, batch normal-
ization is used [18]. The batch normalization is performed
for every convolutional layer, which allows the network to
converge to a better optimum.

For the optimization, the Nesterov momentum is used with
a learning rate of 0.01. The batch size is 16.

P. Luc et al. [19] proposed a network for semantic seg-



(a) Benchmark input: Image 1 (b) Benchmark input: Image 2
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(e) Benchmark input: Image 5

(f) Benchmark input: Image 6

(c) Benchmark input: Image 3  (d) Benchmark input: Image 4

(g) Benchmark input: Image 7  (h) Benchmark input: Image 8

Fig. 4: Different input images that are used for the benchmark. The green area shows the correctly classified article pixels,
the blue area the non-detected article pixels and the red area the pixels that are classified as article but are background.

mentation that uses an adversarial network for regularization.
This regularization approach was also evaluated to see if the
quality of the network improves. The training time increased
because also the discriminator network has to be trained, but
on the other hand there was no improvement in quality. For
this reason the proposed regularization by P. Luc et al. [19]
is not used in the final implementation.

VI. EXPERIMENTS

The experimental setup uses a Geforce GTX 780 to train
the network. The used computer has 128 GiB of RAM and
an Intel XEON E5-2620 CPU, but the training as well as
the classification processes do not require much memory.
The filtered dataset from ARGUS der Presse AG contains
4,135 labeled pages, but only 406 pages are fully labeled.
The training is done in two stages. First, the training uses
the full training set and all input images are preprocessed as
described in Section V. This is done for 210 epochs. After
these epochs, the dataset is limited to only the fully labeled
pages. There are only 406 fully labeled pages, which makes
this training step harder. Unlabeled content is no longer
removed as described in Section V. The neural network now

has the possibility to learn that some newspapers use their
name as a large title on the top of the page. This title is not
part of any article and should be ignored for the segmentation
process. The training on the fully labeled data is done for
150 epochs. After these two stages, the training for the given
dataset is finished.

During the training, the Fj score is calculated for all
pixels. This score already gives a hint if the training works
well or not. Because it is pixel-based it is good locally, but
for the global view it might not be optimal. For this reason
two other scores are defined that work on the output of the
post-processed data.

A. Diarization Error Rate Score

The diarization error rate (DER) score is known from
speaker diarization and was adopted to the newspaper article
segmentation problem by M. Arnold et al. [7]. It uses three
error types. The miss error epjss counts the area of the
articles that were not found by the system, egalsePositive
counts the area that is classified as an article but which should
be classified as background and, finally, econfusion counts the
area of wrongly associated articles. Each detected article is



TABLE II: Detailed benchmark results for 8 images. The best results are in bold.

Implementation Input image DER score Completeness score Classification time [s]
New approach Benchmark image 1 0.1888 0.3000 0.0550
PANOPTES Benchmark image 1 0.7244 0.0000 1.8310
New approach Benchmark image 2 0.0183 1.0000 0.0460
PANOPTES Benchmark image 2 0.0986 1.0000 1.8730
New approach Benchmark image 3 0.0236 0.7500 0.0440
PANOPTES Benchmark image 3 0.3729 0.5000 1.5130
New approach Benchmark image 4 0.0744 0.8750 0.0470
PANOPTES Benchmark image 4 0.5573 0.1250 1.6150
New approach Benchmark image 5 0.2249 0.5000 0.0530
PANOPTES Benchmark image 5 0.5328 0.0000 1.6070
New approach Benchmark image 6 0.2388 0.4000 0.0440
PANOPTES Benchmark image 6 0.2203 0.4000 1.5260
New approach Benchmark image 7 0.0338 1.0000 0.0470
PANOPTES Benchmark image 7 0.4158 0.0000 1.6700
New approach Benchmark image 8 0.2550 0.4000 0.0440
PANOPTES Benchmark image 8 0.1150 0.6000 1.5140

associated with the most overlapping label if there is at least
one overlapping label. All other detected articles that also
overlap with this label are counted for the overlapping area
into €confusion-

The DER score sums up all these errors and is normalized
by A, which is equal to the total area of all reference labels
on the page. The formula for the DER score is shown in
Equation (1).
€confusion 1 €miss T EfalsePositive

3 1
The lower the score, the better is the result. The score is

always in the interval [0, 00), which means for O the result
is perfect.

SDER =

B. Completeness Score

An intuitive explanation for the completeness score is that
is defined as the articles that were found correct divided by
the total number of articles. This means, the score value is
always a rational number in the interval [0, 1], where O is
the worst and 1 is the best value. This score has a very
low tolerance on matching found articles with labels and
therefore requires a high segmentation quality.

The OCR input shown in Figure (2) contains several small
non-rectangular blocks by. These blocks represent text or an
image. The set B contains all blocks. Every labeled reference
page P contains some labels /;. At least one label must be
in P. If a page does not contain any blocks or labels, the
completeness score is always 0.

B:{bo,bl,...},|B| >0 (2)
P ={ly,ly,..},|P| >0 3)
For each reference label [;, there exist some

OCR blocks b, that are completely inside the label [;.
This set is called B[l;]. Labels must not overlap, which
means they never share the same blocks.

B[l;] C B 4)
B[l;] = {bx, € B|by, is inside ;} 5)

TABLE III: Benchmark results summary for over 81 images.
o describes the standard deviation. The best results are in
bold.

Our approach | PANOPTES
Avg. DER score 0.1378 0.2976
Avg. Completeness score 0.5444 0.2079
Min. DER score 0.0051 0.0000
Max. DER score 0.5920 1.0028
Min. Completeness score 0.0000 0.0000
Max. Completeness score 1.0000 1.0000
DER score o 0.1343 0.2265
Completeness score o 0.3464 0.3011
Avg. classification time [s] | 0.0476 1.6553

The segmentation S of the used system contains some
article polygons a;. B[a;] contains all OCR blocks that are
completely inside the article polygon a;. Article polygons
never overlap.

S = {ao,al,...} (7)
Bla;] C B 3
Bla;] = {br. € Blby, is inside a;} 9)

Vai,aj z#yi%[al]ﬂ%[%] :(Z) (10)

The completeness score counts the labels and the article
polygons that contain exactly the same blocks. This number
is divided by the total count of labels. The formula for cal-
culating the completeness score is shown in Equation (11).

[{(a,1) € § x P|Ba] = BI]}|
1P|

(1)

SCOMPLETENESS =

C. Benchmark

The new proposed method is compared with the previous
implementation of PANOPTES [7]. The required classifi-
cation time of the network as well as the quality of the
segmentation are compared. As described in Section I, there
are three approaches in PANOPTES [7], which are combined
together to create a final segmentation. The new method only



replaces the visual approach, therefore the tests focus on this
approach. This system as well as PANOPTES are just a small
part of a larger software system. For this reason, only the
classification time of the neural network is measured.

The required training time our system is around 5 h,
whereas PANOPTES [7] only requires 1 h 15 min of train-
ing. As can be seen, [7] requires much less training time.
Their used model has 252,706 parameters, whereas our
model has 1,435,065 parameters, which might be the reason
for the longer training time. However, our model computes
the complete classification of an image in an average of about
47.6 milliseconds and [7], having to execute the network for
each pixel, therefore requires about 1,655 milliseconds in
average for the total classification. This is shown in Table III.
As a conclusion, our model requires more training time,
but then has a much lower runtime. Both implementations
use Algorithm 1 to compute the polygons. This algorithm is
relatively slow and decreases the relative runtime difference
between the two models.

Both implementations resize the input image before the
neural network processes it. This makes the effective runtime
almost constant. It would be possible for both implemen-
tations to process larger input images, but this does not
improve the quality.

To compare the results of [7] and the new implementation,
the scores that are defined in Sections VI-A and VI-B are
used. Figure (4) shows some images that are used as input
for the benchmark. Green colored areas show which pixels
are classified correctly. The blue pixels are false negative,
which means they are classified as background, but they
are articles. Finally, the red pixels are classified as article
pixels but really are background pixels. The scores for these
images are listed in Table II. A larger benchmark was done
for over 81 fully-labeled images for which a summary of
all results is shown in Table III. As can be seen, the new
solution often outperforms [7].

VII. DISCUSSION

This paper presented an FCN-based approach to learn
newspaper article segmentation. To demonstrate the im-
provements with this architecture, it was compared with
PANOPTES [7], which is based on the approach proposed
by A. Fakhry et al. [13]. Future projects might differ be-
tween the found article types. E.g., the network could
use 3 output classes, which differentiate between articles,
advertisements and background. Another method to reach
this objective could be to use a second neural network,
which is only responsible for classifying a single article as
advertisement or as a real article.

J. A. Montoya-Zegarra et al. [20] proposed a method for
multi-class semantic segmentation of urban areas. They reach
a high accuracy. The used method could be modified and
used for newspaper article segmentation.

VIII. CONCLUSIONS

FCNs are very efficient for semantic segmentation tasks.
This paper shows that the segmentation of newspaper articles
works very well and also very efficiently with FCNs.

FCNs are not only faster in execution than patch-based
approaches, but also reach the same or higher segmentation
quality. FCNs therefore can use larger input images and
analyze the input in more detail with the same computational
time, which can also increase the quality of the output.
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